The ModularGroup Package

Finite-index subgroups of $(P) S L_{2}(\mathbb{Z})$ Version 2.0.0

14 July 2022

Luca L. Junk

Gabriela Weitze-Schmithüsen

Luca L. Junk

Email: junk@math.uni-sb.de
Homepage: https://www.uni-saarland.de/lehrstuhl/weber-moritz/team/luca-junk.html
Address: Saarland University
Department of Mathematics
Postfach 151150
66041 Saarbrücken
Germany

Gabriela Weitze-Schmithüsen

Email: weitze@math.uni-sb.de
Homepage: http://www.math.uni-sb.de/ag/weitze/
Address: AG Weitze-Schmithüsen
FR 6.1 Mathematik
Universität des Saarlandes
D-66041 Saarbrücken

Copyright

© 2022 by Luca L. Junk and Gabriela Weitze-Schmithüsen

Acknowledgements

Supported by Project I. 8 of SFB-TRR 195 'Symbolic Tools in Mathematics and their Application' of the German Research Foundation (DFG).

Contents

1 Introduction 4
1.1 General aims of the ModularGroup package 4
1.2 Technicalities 4
2 Subgroups of $S L_{2}(\mathbb{Z})$ 5
2.1 Construction of modular subgroups 5
2.2 Computing with modular subgroups 7
2.3 Miscellaneous 14
3 Subgroups of $P S L_{2}(\mathbb{Z})$ 17
3.1 Construction of projective modular subgroups 17
3.2 Computing with projective modular subgroups 18
References 25
Index 26

Chapter 1

Introduction

1.1 General aims of the ModularGroup package

This GAP package provides methods for computing with finite-index subgroups of the modular groups $S L_{2}(\mathbb{Z})$ and $P S L_{2}(\mathbb{Z})$. This includes, but is not limited to, computation of the generalized level, index or cusp widths. It also implements algorithms described in [Hsu96] and [HL14] for testing if a given group is a congruence subgroup. Hence it differs from the Congruence package [DJKV18], which can be used - among other things - to construct canonical congruence subgroups of $S L_{2}(\mathbb{Z})$.

1.2 Technicalities

A convenient way to represent finite-index subgroups of $S L_{2}(\mathbb{Z})$ is by specifying the action of generator matrices of $S L_{2}(\mathbb{Z})$ on the right cosets by right multiplication. For example, one could choose the generators

$$
S=\left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right) \quad T=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

and represent a subgroup as a tuple of transitive permutations $\left(\sigma_{S}, \sigma_{T}\right)$ describing the action of S and T. This is exactly the way this package internally treats such subgroups. We use the convention that 1 corresponds to the coset of the identity matrix. Note that such a representation as a tuple of permutations is only unique up to relabelling of the cosets, i.e. up to simultaneous conjugation (fixing the 1 coset by our convention).

Chapter 2

Subgroups of $S L_{2}(\mathbb{Z})$

For representing finite-index subgroups of $S L_{2}(\mathbb{Z})$, this package introduces the new object ModularSubgroup. As stated in the introduction, a ModularSubgroup essentially consists of the two permutations σ_{S} and σ_{T} describing the coset graph with respect to the generators S and T (with the convention that 1 corresponds to the identity coset). So explicitly specifying these permutations is the canonical way to construct a ModularSubgroup.
Though you might not always have a coset graph of your subgroup at hand, but rather a list of generating matrices. Therefore we implement multiple constructors for ModularSubgroup: three that take as input two permutations describing the coset graph with respect to different pairs of generators of $S L_{2}(\mathbb{Z})$, and one that takes a list of $S L_{2}(\mathbb{Z})$ matrices as generators.

2.1 Construction of modular subgroups

2.1.1 Constructors

\triangleright ModularSubgroup (s, t)
(operation)
Returns: A modular subgroup.
Constructs a ModularSubgroup object corresponding to the finite-index subgroup of $S L_{2}(\mathbb{Z})$ described by the permutations s and t.
This constructor tests if the given permutations actually describe the coset action of the matrices

$$
S=\left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right), \quad T=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

by checking that they act transitively and satisfy the relations

$$
s^{4}=\left(s^{3} t\right)^{3}=s^{2} t s^{-2} t^{-1}=1
$$

Upon creation, the cosets are renamed in a standardized way to make the internal interaction with existing GAP methods easier. (The fact that 1 corresponds to the identity coset is not changed by this)

Example

```
gap> G := ModularSubgroup(
> (1,2) (3,4) (5,6) (7,8) (9,10),
> (1,4) (2,5,9,10,8) (3,7,6));
<modular subgroup of index 10>
```

Returns: A modular subgroup.
Synonymous for ModularSubgroup (see above). \triangleright ModularSubgroupRT (r, t) (operation)
Returns: A modular subgroup.
Constructs a ModularSubgroup object corresponding to the finite-index subgroup of $S L_{2}(\mathbb{Z})$ determined by the permutations r and t which describe the action of the matrices

$$
R=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right) \quad T=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

on the right cosets.
A check is performed if the permutations actually describe such an action on the cosets of some subgroup.
Upon creation, the cosets are renamed in a standardized way to make the internal interaction with existing GAP methods easier. (The fact that 1 corresponds to the identity coset is not changed by this)

Example

```
gap> G := ModularSubgroupRT(
> (1,9,8, 10,7)(2,6)(3,4,5),
> (1,4)(2,5,9,10,8)(3,7,6));
<modular subgroup of index 10>
```

ModularSubgrouSJ (s, j)
(operation)
Returns: A modular subgroup.
Constructs a ModularSubgroup object corresponding to the finite-index subgroup of $S L_{2}(\mathbb{Z})$ determined by the permutations s and j which describe the action of the matrices

$$
S=\left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right) \quad J=\left(\begin{array}{rr}
0 & 1 \\
-1 & 1
\end{array}\right)
$$

on the right cosets.
A check is performed if the permutations actually describe such an action on the cosets of some subgroup.
Upon creation, the cosets are renamed in a standardized way to make the internal interaction with existing GAP methods easier. (The fact that 1 corresponds to the identity coset is not changed by this)

Example

```
gap> G := ModularSubgroupSJ(
> (1, 2) (3,6) (4,7)(5,9) (8,10),
> (1,5,6)(2,3,7)(4,9,10));
<modular subgroup of index 10>
```

Returns: A modular subgroup.
Constructs a ModularSubgroup object corresponding to the finite-index subgroup of $S L_{2}(\mathbb{Z})$ generated by the matrices in gens.
No test is performed to check if the generated subgroup actually has finite index!
This constructor implicitly computes a coset table of the subgroup. Hence it might be slow for very large index subgroups.

Example \qquad

```
gap> G := ModularSubgroup([
> [[1,2], [0,1]],
> [[1,0], [2,1]],
> [[-1,0], [0,-1]]
> ]);
<modular subgroup of index 6>
```


2.1.2 Getters for the coset action

```
\Action(G)
(operation)
```

Returns: A permutation.
Returns the permutation σ_{S} describing the action of the matrix S on the cosets of $G . \triangleright$ TAction (G)
(operation)
Returns: A permutation.
Returns the permutation σ_{T} describing the action of the matrix T on the cosets of G. \triangleright RAction (G)
(operation)
Returns: A permutation.
Returns the permutation σ_{R} describing the action of the matrix R on the cosets of G. \triangleright JAction (G)
(operation)
Returns: A permutation.
Returns the permutation σ_{J} describing the action of the matrix J on the cosets of G. \triangleright CosetActionOf (A, G)
(operation)
Returns: A permutation.
Returns the permutation σ_{A} describing the action of the matrix $A \in S L_{2}(\mathbb{Z})$ on the cosets of G.

2.2 Computing with modular subgroups

2.2.1 Index (IndexSL2Z)

Returns: A natural number.
For a given modular subgroup G this method returns its index in $S L_{2}(\mathbb{Z})$. As G is internally stored as permutations (s, t) this is just
LargestMovedPoint (s,t)
(or 1 if the permutations are trivial).

```
gap> G := ModularSubgroup((1,2) (3,5)(4,6), (1,3) (2,4) (5,6));
<modular subgroup of index 6>
gap> Index(G);
6
```


2.2.2 GeneralizedLevel (GeneralizedLevelSL2Z)

\triangleright GeneralizedLevel (G)
(attribute)
Returns: A natural number.
This method calculates the general Wohlfahrt level (i.e. the lowest common multiple of all cusp widths) of G as defined in [Woh64].

Example

```
gap> G := ModularSubgroup((1,2) (3,5) (4,6), (1,3) (2,4) (5,6));
<modular subgroup of index 6>
gap> GeneralizedLevel(G);
2
```


2.2.3 RightCosetRepresentatives (RightCosetRepresentativesSL2Z)

- RightCosetRepresentatives (G)
(attribute)
Returns: A list of words.
This function returns a list of representatives of the (right) cosets of G as words in S and T.
Example
gap> G := ModularSubgroup $((1,2),(2,3))$;
<modular subgroup of index 3>
gap> RightCosetRepresentatives(G);
[<identity ...>, S, S*T]

2.2.4 GeneratorsOfGroup (GeneratorsOfGroupSL2Z)

\triangleright GeneratorsOfGroup (G)
(attribute)
Returns: A list of words.
Calculates a list of generators (as words in S and T) of G. This list might include redundant generators (or even duplicates).

Example
gap> $G:=$ ModularSubgroup $((1,2)(3,5)(4,6),(1,3)(2,4)(5,6))$;
<modular subgroup of index 6>
gap> GeneratorsOfGroup (G) ;
$\left[S^{\wedge}-2, T^{\wedge}-2, S * T^{\wedge}-2 * S^{\wedge}-1\right]$

2.2.5 MatrixGeneratorsOfGroup

\triangleright MatrixGeneratorsOfGroup (G)
(attribute)
Returns: A list of matrices.
Calculates a list of generator matrices of G. This list might include redundant generators (or even duplicates).

Example
gap> $G:=$ ModularSubgroup $((1,2)(3,5)(4,6),(1,3)(2,4)(5,6))$;
<modular subgroup of index 6>
gap> MatrixGeneratorsOfGroup (G) ;
$[[[-1,0],[0,-1]],[[1,-2],[0,1]],[[1,0],[2,1]]]$

2.2.6 IsCongruence (IsCongruenceSL2Z)

\triangleright IsCongruence (G)
Returns: True or false.
This method test whether a given modular subgroup G is a congruence subgroup. It is essentially an implementation of an algorithm described in [HL14].

Example

```
gap> G := ModularSubgroup([
\(>[[1,2],[0,1]]\),
\(>[[1,0],[2,1]]\)
> ]);
<modular subgroup of index 12>
gap> IsCongruence (G) ;
true
```


2.2.7 Cusps (CuspsSL2Z)

$\triangleright \operatorname{Cusps}(G)$
(attribute)
Returns: A list of rational numbers and infinity.
This method computes a list of inequivalent cusp representatives with respect to G.
Example

```
gap> G := ModularSubgroup(
> (1, 2) (3,6) (4, 8) (5,9) (7,11) (10,13) (12,15) (14,17) (16,19) (18, 21) (20, 23) (22, 24),
> (1,3,7,4)(2,5)(6,9,8,12,14,10)(11,13,16,20, 18,15)(17, 21, 22, 19)(23, 24)
> );
<modular subgroup of index 24>
gap> Cusps(G);
[ infinity, 0, 1, 2, 3/2, 5/3 ]
```


2.2.8 CuspWidth (CuspWidthSL2Z)

\triangleright CuspWidth (c, G)
(operation)
Returns: A natural number.
This method takes as input a cusp c (a rational number or infinity) and a modular group G and calculates the width of this cusp with respect to G.

```
gap> G := ModularSubgroup(
> (1,2,6,3)(4,11,15,12) (5,13,16,14)(7,17,9,18)(8,19,10,20)(21,24,22,23),
> (1,4,5)(2,7,8)(3,9,10)(6,15,16)(11,20,21)(12,19,22)(13,23,17)(14,24,18)
> );
<modular subgroup of index 24>
gap> CuspWidth(-1, G);
3
gap> CuspWidth(infinity, G);
3
```


2.2.9 CuspsEquivalent (CuspsEquivalentSL2Z)

\triangleright CuspsEquivalent (p, q, G)
(operation)
Returns: True or false.
Takes two cusps p and q and a modular subgroup G and checks if they are equivalent modulo G, i.e. if there exists a matrix $A \in G$ with $A p=q$.

```
gap> G := ModularSubgroup(
> (1, 2, 6, 3) (4, 11, 15, 12) (5,13,16, 14) (7, 17, 9, 18) (8,19, 10, 20) (21, 24, 22, 23),
> (1,4,5)(2,7,8)(3,9,10)(6,15,16)(11, 20, 21) (12, 19, 22) (13, 23, 17) (14, 24,18)
> );
<modular subgroup of index 24>
gap> CuspsEquivalent(infinity, 1, G);
false
gap> CuspsEquivalent(-1, 1/2, G);
true
```


2.2.10 CosetRepresentativeOfCusp (CosetRepresentativeOfCuspSL2Z)

\triangleright CosetRepresentativeOfCusp (c, G)
(operation)
Returns: A word in S and T .
For a cusp c this function returns a right coset representative A of G such that $A \infty$ and c are equivalent with respect to G.

Example

```
gap> G := ModularSubgroup(
> (1, 2, 6, 3)(4,11, 15, 12) (5,13,16, 14) (7, 17, 9, 18) (8, 19, 10, 20) (21, 24, 22, 23),
> (1,4,5)(2,7,8)(3,9,10)(6,15,16)(11, 20, 21) (12, 19, 22) (13, 23, 17) (14, 24, 18)
> );
```

```
<modular subgroup of index 24>
gap> CosetRepresentativeOfCusp(4, G);
T*S
```


2.2.11 IndexModN (IndexModNSL2Z)

$\triangleright \operatorname{IndexModN}(G, N)$
(operation)
Returns: A natural number.
For a modular subgroup G and a natural number N this method calculates the index of the projection \bar{G} of G in $S L_{2}(\mathbb{Z} / N \mathbb{Z})$.

Example

```
gap> G := ModularSubgroup((1,2) (3,5) (4,6), (1,3) (2,4) (5,6));
<modular subgroup of index 6>
gap> IndexModN(G, 2);
6
```


2.2.12 Deficiency (DeficiencySL2Z)

$\triangleright \operatorname{Deficiency}(G, N)$
(operation)
Returns: A natural number.
For a modular subgroup G and a natural number N this method calculates the so-called deficiency of G from being a congruence subgroup of level N.
The deficiency of a finite-index subgroup Γ of $S L_{2}(\mathbb{Z})$ was introduced in [WS15]. It is defined as the index $[\Gamma(N): \Gamma(N) \cap \Gamma]$ where $\Gamma(N)$ is the principal congruence subgroup of level N.

Example

```
gap> G := ModularSubgroup([
> [[1,2],[0,1]],
> [[1,0],[2,1]]
> ]);
<modular subgroup of index 12>
gap> Deficiency(G, 2);
2
gap> Deficiency(G, 4);
1
```


2.2.13 Deficiency (DeficiencySL2ZAttr)

\triangleright Deficiency (G)

(attribute)
Returns: A natural number.
Shorthand for Deficiency (G, GeneralizedLevel(G)).
Example
gap> G := ModularSubgroup([

```
> [[1,2],[0,1]],
> [[1,0], [2,1]]
> ]);
<modular subgroup of index 12>
gap> Deficiency(G);
2
gap> Deficiency(G, GeneralizedLevel(G));
2
```


2.2.14 Projection

\triangleright Projection (G)
Returns: A projective modular subgroup.
For a given modular subgroup G this function calculates its image \bar{G} under the projection $\pi: S L_{2}(\mathbb{Z}) \rightarrow P S L_{2}(\mathbb{Z})$.

```
gap> G := ModularSubgroup([
> [[1, 2],[0,1]],
> [[1,0],[2,1]]
> ]);
<modular subgroup of index 12>
gap> Projection(G);
<projective modular subgroup of index 6>
```


2.2.15 Conjugate (ConjugateSL2Z)

\triangleright Conjugate (G, A)
(operation)
Returns: A ModularSubgroup.
Conjugates the group G by A and returns the group $A^{-1} * G * A$.

2.2.16 NormalCore (NormalCoreSL2Z)

\triangleright NormalCore (G)
(attribute)
Returns: A modular subgroup.
Calculates the normal core of G in $S L_{2}(\mathbb{Z})$, i.e. the maximal subgroup of G that is normal in $S L_{2}(\mathbb{Z})$.
\qquad

```
gap> G := ModularSubgroup([
> [[1,2],[0,1]],
> [[1,0], [2,1]]
> ]);
<modular subgroup of index 12>
gap> NormalCore(G);
<modular subgroup of index 48>
```


2.2.17 QuotientByNormalCore (QuotientByNormalCoreSL2Z)

\triangleright QuotientByNormalCore (G)
(attribute)
Returns: A finite group.
Calculates the quotient of $S L_{2}(\mathbb{Z})$ by the normal core of G.

Example

gap> G := ModularSubgroup([
$>[[1,2],[0,1]]$,
$>[[1,0],[2,1]]$
>]);
<modular subgroup of index 12>
gap> QuotientByNormalCore (G) ;
<permutation group with 2 generators>

2.2.18 AssociatedCharacterTable (AssociatedCharacterTableSL2Z)

\triangleright AssociatedCharacterTable(G)
(attribute)
Returns: A character table.
Returns the character table of $S L_{2}(\mathbb{Z}) / N$ where N is the normal core of G.
Example

```
gap> G := ModularSubgroup([
> [[1,2],[0,1]],
> [[1,0],[2,1]]
> ]);
<modular subgroup of index 12>
gap> AssociatedCharacterTable(G);
CharacterTable( <permutation group of size 48 with 2 generators> )
```


2.2.19 IsElementOf (IsElementOfSL2Z)

\triangleright IsElementOf (A, G)
(operation)
Returns: True or false.
This function checks if a given matrix A is an element of the modular subgroup G.
Example
gap> G := ModularSubgroup([
> [[1, 2], [0, 1]],
$>[[1,0],[2,1]]$
>]);
<modular subgroup of index 12>
gap> IsElementOf([[-1,0], [0,-1]], G);
false
gap> IsElementOf([[1,4],[0,1]], G);
true

2.2.20 Genus (GenusSL2Z)

\triangleright Genus (G)
Returns: A non-negative integer.
Computes the genus of the quotient $G \backslash \mathbb{H}$ via an algorithm described in [Sch04].

Example

```
gap> G := ModularSubgroup((1,2), (2,3));
<modular subgroup of index 3>
gap> Genus(G);
0
```


2.3 Miscellaneous

The following functions are mostly helper functions used internally and are only documented for sake of completeness.

2.3.1 DefinesCosetActionST

\triangleright DefinesCosetActionST (s, t)
Returns: True or false.
Checks if two given permutations s and t describe the action of the generator matrices S and T on the cosets of some subgroup. This is the case if they satisfy the relations

$$
s^{4}=\left(s^{3} t\right)^{3}=s^{2} t s^{-2} t^{-1}=1
$$

and act transitively.
Example

```
gap> s := (1,2) (3,4) (5,6) (7, 8) (9, 10);;
gap> t := (1,4) (2,5,9,10,8)(3,7,6);;
gap> DefinesCosetActionST(s,t);
true
```


2.3.2 DefinesCosetActionRT

\triangleright DefinesCosetActionRT (r, t)
(operation)
Returns: True or false.
Checks if two given permutations r and t describe the action of the generator matrices R and T on the cosets of some subgroup. This is the case if they satisfy the relations

$$
\left(r t^{-1} r\right)^{4}=\left(\left(r t^{-1} r\right)^{3} t\right)^{3}=\left(r t^{-1} r\right)^{2} t\left(r t^{-1} r\right)^{-2} t^{-1}=1
$$

and act transitively.

```
gap> r := (1,9,8,10,7)(2,6)(3,4,5);;
gap> t := (1,4)(2,5,9,10,8)(3,7,6);;
gap> DefinesCosetActionRT(r,t);
true
```


2.3.3 DefinesCosetActionSJ

\triangleright DefinesCosetActionSJ(s, j)
(operation)
Returns: True or false.
Checks if two given permutations s and j describe the action of the generator matrices S and J on the cosets of some subgroup. This is the case if they satisfy the relations

$$
s^{4}=\left(s^{3} j^{-1} s^{-1}\right)^{3}=s^{2} j^{-1} s^{-2} j=1
$$

and act transitively.
Example

```
gap> s := (1,2) (3,4) (5,6) (7,8) (9, 10); ;
gap> j := (1,5,6)(2,3,7)(4,9,10);;
gap> DefinesCosetActionSJ(s,j);
true
```


2.3.4 CosetActionFromGenerators

\triangleright CosetActionFromGenerators (gens)
(operation)
Returns: A tuple of permutations.
Takes a list of generator matrices and calculates the coset graph (as two permutations σ_{S} and σ_{T}) of the generated subgroup of $S L_{2}(\mathbb{Z})$.

Example

```
gap> CosetActionFromGenerators([
> [[1, 2],[0,1]],
> [[1,0], [2,1]]
> ]);
[(1, 2, 5, 3)(4, 8, 10, 9)(6,11,7,12), (1,4)(2,6)(3,7)(5,10)(8,12,9,11)]
```


2.3.5 STDecomposition

\triangleright STDecomposition (A)
(operation)
Returns: A word in S and T.
Takes a matrix $A \in S L_{2}(\mathbb{Z})$ and decomposes it into a word in the generator matrices S and T.
Example

```
gap> M := [ [ 4, 3 ], [ -3, -2 ] ];;
```

```
gap> STDecomposition(M);
```

$\mathrm{S}^{\wedge} 2 * \mathrm{~T}^{\wedge}-1 * \mathrm{~S}^{\wedge}-1 * \mathrm{~T}^{\wedge} 2 * \mathrm{~S}^{\wedge}-1 * \mathrm{~T}^{\wedge}-1 * \mathrm{~S}^{\wedge}-1$

2.3.6 RTDecomposition

\triangleright RTDecomposition(A)
(operation)
Returns: A word in R and T.
Takes a matrix $A \in S L_{2}(\mathbb{Z})$ and decomposes it into a word in the generator matrices R and T.
Example \qquad

```
gap> M := [ [ 4, 3 ], [ -3, -2 ] ];;
gap> RTDecomposition(M);
(R*T^-1*R)^2*T^-1*R^-1*(T*R^-1*T)^2*R^
```


2.3.7 SJDecomposition

\triangleright SJDecomposition(A)
(operation)
Returns: A word in S and J.
Takes a matrix $A \in S L_{2}(\mathbb{Z})$ and decomposes it into a word in the generator matrices S and J.
Example

```
gap> M := [ [ 4, 3 ], [ -3, -2 ] ];;
gap> SJDecomposition(M);
S^3*J*(S^-1*J^-1)^2*S^-1*J*S^-1
```


2.3.8 STDecompositionAsList

\triangleright STDecompositionAsList (A)
(operation)

Returns: A list representing a word in S and T.

Takes a matrix $A \in S L_{2}(\mathbb{Z})$ and decomposes it into a word in the generator matrices S and T. The word is represented as a list in the format [[generator, exponent], ...]

Example

```
gap> M := [ [ 4, 3 ], [ -3, -2 ] ];;
gap> STDecompositionAsList(M);
[ [ "S", 2 ], [ "T", -1 ], [ "S", -1 ], [ "T", 2 ], [ "S", -1 ], [ "T", -1 ],
    [ "S", -1 ], [ "T", 0 ] ]
```


Chapter 3

Subgroups of $P S L_{2}(\mathbb{Z})$

Analogous to finite-index subgroups of $S L_{2}(\mathbb{Z})$, we define a new type ProjectiveModularSubgroup for representing subgroups of $P S L_{2}(\mathbb{Z})$. It consists essentially of two permutations $\sigma_{\bar{S}}$ and $\sigma_{\bar{T}}$ describing the action of \bar{S} and \bar{T} on the cosets of the given subgroup, where \bar{S} and \bar{T} are the images of S and T in $P S L_{2}(\mathbb{Z})$.
The methods implemented for $P S L_{2}(\mathbb{Z})$ subgroups are mostly the same as for $S L_{2}(\mathbb{Z})$ subgroups and behave more or less identically. Nevertheless we list them here.

3.1 Construction of projective modular subgroups

3.1.1 Constructors

\triangleright ProjectiveModularSubgroup (s, t)
(operation)
Returns: A projective modular subgroup.
Constructs a ProjectiveModularSubgroup object corresponding to the finite-index subgroup of $P S L_{2}(\mathbb{Z})$ described by the permutations s and t.
This constructor tests if the given permutations actually describe the coset action of \bar{S} and \bar{T} on some subgroup by checking that they act transitively and satisfy the relations

$$
s^{2}=(s t)^{3}=1
$$

Upon creation, the cosets are renamed in a standardized way to make the internal interaction with extisting GAP methods easier.

```
gap> G := ProjectiveModularSubgroup(
> (1, 2) (3,4) (5,6) (7, 8) (9, 10) ,
> (1,4)(2,5,9,10,8)(3,7,6));
<projective modular subgroup of index 10>
```

If you want to construct a ProjectiveModularSubgroup from a list of generators, you can lift each generator to a matrix in $S L_{2}(\mathbb{Z})$, construct from these a ModularSubgroup, and then project it to $P S L_{2}(\mathbb{Z})$ via Projection.

3.1.2 Getters for the coset action

\triangleright SAction (G)
(operation)
Returns: A permutation.
Returns the permutation $\sigma_{\bar{S}}$ describing the action of \bar{S} on the cosets of G.
\triangleright TAction (G)
(operation)
Returns: A permutation.
Returns the permutation $\sigma_{\bar{T}}$ describing the action of \bar{T} on the cosets of G.

3.2 Computing with projective modular subgroups

3.2.1 Index (IndexPSL2Z)

\triangleright Index (G)
(attribute)
Returns: A natural number.
For a given projective modular subgroup G this method returns its index in $P S L_{2}(\mathbb{Z})$. As G is internally stored as permutations (s, t) this is just

```
LargestMovedPoint(s,t)
```

(or 1 if the permutations are trivial).
Example

```
gap> G := ProjectiveModularSubgroup((1,2),(2,3));
<projective modular subgroup of index 3>
gap> Index(G);
3
```


3.2.2 GeneralizedLevel (GeneralizedLevelPSL2Z)

\triangleright GeneralizedLevel (G)
(attribute)
Returns: A natural number.
This method calculates the general Wohlfahrt level (i.e. the lowest common multiple of all cusp widths) of G as defined in [Woh64].

Example

```
gap> G := ProjectiveModularSubgroup(
> (1, 2) (3,6) (4, 8) (5,9) (7,11) (10,13) (12,15) (14,17) (16,19) (18, 21) (20, 23) (22, 24),
> (1, 3,7,4)(2,5)(6,9,8,12,14,10)(11,13,16,20,18,15)(17, 21, 22, 19) (23, 24)
> );
<projective modular subgroup of index 24>
gap> GeneralizedLevel(G);
12
```


3.2.3 RightCosetRepresentatives (RightCosetRepresentativesPSL2Z)

\triangleright RightCosetRepresentatives (G)
(attribute)
Returns: A list of words.
This function returns a list of representatives of the (right) cosets of G as words in \bar{S} and \bar{T}.
Example

```
gap> G := ProjectiveModularSubgroup((1,2), (2,3));
<projective modular subgroup of index 3>
gap> RightCosetRepresentatives(G);
[ <identity ...>, S, S*T ]
```


3.2.4 GeneratorsOfGroup (GeneratorsOfGroupPSL2Z)

\triangleright GeneratorsOfGroup (G)
(attribute)
Returns: A list of words.
Calculates a list of generators (as words in \bar{S} and \bar{T}) of G. This list might include redundant generators.

Example
gap> G := ProjectiveModularSubgroup $((1,2)(3,5)(4,6),(1,3)(2,4)(5,6))$;
<projective modular subgroup of index 6>
gap> GeneratorsOfGroup (G) ;
[$\left.\mathrm{T}^{\wedge}-2, \mathrm{~S} * \mathrm{~T}^{\wedge}-2 * \mathrm{~S}^{\wedge}-1\right]$

3.2.5 IsCongruence (IsCongruencePSL2Z)

\triangleright IsCongruence (G)
(attribute)
Returns: True or false.
This method test whether a given modular subgroup G is a congruence subgroup. It is essentially an implementation of an algorithm described in [Hsu96].

Example

```
gap> G := ProjectiveModularSubgroup(
> (1, 2) (3,5) (4,6),
> (1,3) (2,4) (5,6)
> );
<projective modular subgroup of index 6>
gap> IsCongruence(G);
true
```


3.2.6 Cusps (CuspsPSL2Z)

$\triangleright \operatorname{Cusps}(G) \quad$ (attribute)
Returns: A list of rational numbers and infinity.
This method computes a list of inequivalent cusp representatives with respect to G.

```
gap> G := ProjectiveModularSubgroup(
> (1,2) (3,6) (4, 8) (5,9) (7,11) (10,13) (12,15) (14,17) (16,19) (18,21) (20, 23) (22, 24),
> (1, 3,7,4)(2,5)(6,9,8,12,14,10)(11,13,16,20,18,15)(17, 21, 22,19)(23, 24)
> );
<projective modular subgroup of index 24>
gap> Cusps(G);
[ infinity, 0, 1, 2, 3/2, 5/3 ]
```


3.2.7 CuspWidth (CuspWidthPSL2Z)

- CuspWidth (c, G)
(operation)
Returns: A natural number.
This method takes as input a cusp c (a rational number or infinity) and a modular group G and calculates the width of this cusp with respect to G.

Example

```
gap> G := ProjectiveModularSubgroup(
> (1, 2) (3,7) (4, 8) (5,9) (6, 10) (11, 12) ,
> (1,3,4)(2,5,6)(7,10,11)(8,12,9)
> );
<projective modular subgroup of index 12>
gap> CuspWidth(-1, G);
3
gap> CuspWidth(infinity, G);
3
```


3.2.8 CuspsEquivalent (CuspsEquivalentPSL2Z)

\triangleright CuspsEquivalent (p, q, G)
(operation)
Returns: True or false.
Takes two cusps p and q and a projective modular subgroup G and checks if they are equivalent modulo G, i.e. if there exists $A \in G$ with $A p=q$.

Example

```
gap> G := ProjectiveModularSubgroup(
> (1, 2) (3,7)(4,8) (5,9) (6,10) (11, 12) ,
> (1,3,4)(2,5,6)(7,10,11)(8,12,9)
> );
<projective modular subgroup of index 12>
gap> CuspsEquivalent(infinity, 1, G);
false
gap> CuspsEquivalent(-1, 1/2, G);
true
```


3.2.9 CosetRepresentativeOfCusp (CosetRepresentativeOfCuspPSL2Z)

\triangleright CosetRepresentativeOfCusp (c, G)
(operation)
Returns: A word in S and T .
For a cusp c this function returns a right coset representative A of G such that $A \infty$ and c are equivalent with respect to G.

[^0]```
gap> G := ProjectiveModularSubgroup(
> (1,2)(3,7)(4,8)(5,9)(6,10)(11, 12),
> (1,3,4)(2,5,6)(7, 10,11)(8,12, 9)
>);
<projective modular subgroup of index 12>
gap> CosetRepresentativeOfCusp(4, G);
T*S
```


### 3.2.10 LiftToSL2ZEven

- LiftToSL2ZEven (G)
(operation)
Returns: A modular subgroup.
Lifts a given subgroup $G$ of $P S L_{2}(\mathbb{Z})$ to an even subgroup of $S L_{2}(\mathbb{Z})$, i.e. a group that contains - 1 and whose projection to $P S L_{2}(\mathbb{Z})$ is $G$.

Example

```
gap> G := ProjectiveModularSubgroup(
> (1,2)(3,7)(4,8)(5,9)(6,10)(11, 12) ,
> (1,3,4)(2,5,6)(7, 10, 11)(8, 12, 9)
>);
<projective modular subgroup of index 12>
gap> LiftToSL2ZOdd(G);
<modular subgroup of index 12>
```


### 3.2.11 LiftToSL2ZOdd

## - LiftToSL2ZOdd (G)

(operation)
Returns: A modular subgroup.
Lifts a given subgroup $G$ of $P S L_{2}(\mathbb{Z})$ to an odd subgroup of $S L_{2}(\mathbb{Z})$, i.e. a group that does not contain -1 and whose projection to $P S L_{2}(\mathbb{Z})$ is $G$.

```
gap> G := ProjectiveModularSubgroup(
> (1,2)(3,7)(4,8)(5,9)(6,10)(11, 12),
> (1,3,4)(2,5,6)(7, 10,11)(8,12,9)
>);
<projective modular subgroup of index 12>
gap> LiftToSL2ZOdd(G);
<modular subgroup of index 24>
```


### 3.2.12 IndexModN (IndexModNPSL2Z)

$\triangleright \operatorname{IndexModN}(G, N)$
(operation)
Returns: A natural number.
For a projective modular subgroup $G$ and a natural number $N$ this method calculates the index of the projection $\bar{G}$ of $G$ in $P S L_{2}(\mathbb{Z} / N \mathbb{Z})$.

Example

```
gap> G := ProjectiveModularSubgroup(
> (1, 2) (3,6) (4, 8) (5,9) (7,11) (10,13) (12,15) (14,17) (16,19) (18, 21) (20, 23) (22, 24),
> (1, 3,7,4)(2,5)(6,9,8,12,14,10)(11, 13,16,20,18,15)(17, 21, 22, 19) (23, 24)
>);
<projective modular subgroup of index 24>
gap> IndexModN(G, 2);
6
```


### 3.2.13 Deficiency (DeficiencyPSL2Z)

```
D Deficiency(G, N)
```

Returns: A natural number.
For a projective modular subgroup $G$ and a natural number $N$ this method calculates the so-called deficiency of $G$ from being a congruence subgroup of level $N$.
The deficiency of a finite-index subgroup $\Gamma$ of $\operatorname{PSL}_{2}(\mathbb{Z})$ was introduced in [WS15]. It is defined as the index $[\Gamma(N): \Gamma(N) \cap \Gamma]$ where $\Gamma(N)$ is the principal congruence subgroup of level $N$.

Example

```
gap> G := ProjectiveModularSubgroup(
> (1, 2) (3,6) (4, 8) (5,9) (7, 11) (10,13) (12, 15) (14, 17) (16, 19) (18, 21) (20, 23) (22, 24),
> (1, 3,7,4)(2,5)(6,9,8,12,14,10)(11,13,16,20,18,15)(17, 21, 22, 19) (23,24)
>);
<projective modular subgroup of index 24>
gap> Deficiency(G, 4);
4
```


### 3.2.14 Deficiency (DeficiencyPSL2ZAttr)

```
Deficiency(G)
```

Returns: A natural number.
Shorthand for Deficiency (G, GeneralizedLevel(G)).
Example

```
gap> G := ProjectiveModularSubgroup(
> (1, 2) (3,6) (4, 8) (5,9) (7,11) (10,13) (12,15) (14,17) (16,19) (18, 21) (20, 23) (22, 24),
> (1,3,7,4)(2,5)(6,9,8,12,14,10)(11,13,16, 20, 18,15)(17, 21, 22, 19)(23, 24)
>);
<projective modular subgroup of index 24>
gap> Deficiency(G);
4
```

```
gap> Deficiency(G, GeneralizedLevel(G));
4
```


### 3.2.15 Conjugate (ConjugatePSL2Z)

$\triangleright$ Conjugate (G, A)
(operation)
Returns: A ProjectiveModularSubgroup.
Conjugates the group $G$ by (the redidue class in $P S L_{2}(\mathbb{Z})$ of) $A$ and returns the group $A^{-1} * G * A$.

### 3.2.16 NormalCore (NormalCorePSL2Z)

$\triangleright$ NormalCore $(G)$
(attribute)
Returns: A projective modular subgroup.
Calculates the normal core of $G$ in $P S L_{2}(\mathbb{Z})$, i.e. the maximal subgroup of $G$ that is normal in $P S L_{2}(\mathbb{Z})$.

```
gap> G := ProjectiveModularSubgroup(
> (1, 2) (3,6)(4, 8) (5,9) (7, 11) (10,13) (12, 15) (14, 17) (16, 19) (18, 21) (20, 23) (22, 24),
> (1, 3,7,4)(2,5)(6,9,8,12,14,10)(11, 13,16,20,18,15)(17, 21, 22, 19) (23, 24)
>);
<projective modular subgroup of index 24>
gap> NormalCore(G);
<projective modular subgroup of index 3456>
```


### 3.2.17 QuotientByNormalCore (QuotientByNormalCorePSL2Z)

$\triangleright$ QuotientByNormalCore (G)
Returns: A finite group.
Calculates the quotient of $P S L_{2}(\mathbb{Z})$ by the normal core of $G$.

```
Example
```

```
gap> G := ProjectiveModularSubgroup(
> (1, 2) (3,6) (4, 8) (5,9) (7,11) (10,13) (12,15) (14, 17) (16,19) (18, 21) (20, 23) (22, 24),
> (1, 3,7,4)(2,5)(6,9,8,12,14,10)(11, 13,16,20,18,15)(17, 21, 22, 19)(23, 24)
>);
<projective modular subgroup of index 24>
gap> QuotientByNormalCore(G);
<permutation group with 2 generators>
```


### 3.2.18 AssociatedCharacterTable (AssociatedCharacterTablePSL2Z)

- AssociatedCharacterTable (G)

Returns: A character table.
Returns the character table of $P S L_{2}(\mathbb{Z}) / N$ where $N$ is the normal core of $G$.

```
gap> G := ProjectiveModularSubgroup(
> (1, 2) (3,6) (4, 8) (5,9) (7, 11) (10, 13) (12, 15) (14, 17) (16, 19) (18, 21) (20, 23) (22, 24),
> (1, 3,7,4)(2,5)(6,9,8,12,14,10)(11,13,16,20,18,15)(17, 21, 22,19)(23, 24)
>);
<projective modular subgroup of index 24>
gap> AssociatedCharacterTable(G);
CharacterTable(<permutation group of size 3456 with 2 generators>)
```


### 3.2.19 IsElementOf (IsElementOfPSL2Z)

- IsElementOf $(A, G)$
(operation)
Returns: True or false.
This function checks if the image of a given matrix $A$ in $P S L_{2}(\mathbb{Z})$ is an element of the group $G$.
Example
gap> G := ProjectiveModularSubgroup $((1,2),(2,3))$;
<modular subgroup of index 3>
gap> IsElementOf ([[1, 1], [0, 1]], G);
true
gap> IsElementOf([[0,-1],[1,0]], G);
false


### 3.2.20 Genus (GenusPSL2Z)

$\triangleright$ Genus $(G)$
(attribute)
Returns: A non-negative integer.
Computes the genus of the quotient $G \backslash \mathbb{H}$ via an algorithm described in [Sch04].
Example

```
gap> G := ProjectiveModularSubgroup((1,2),(2,3));
<modular subgroup of index 3>
gap> Genus(G);
O
```


## References

[DJKV18] Ann Dooms, Eric Jespers, Alexander Konovalov, and Helena Verrill. Congruence, congruence subgroups of $\operatorname{SL}(2, Z)$, Version 1.2.2. https://gap-packages.github.io/ Congruence, Feb 2018. GAP package. 4
[HL14] Thomas Hamilton and David Loeffler. Congruence testing for odd subgroups of the modular group. LMS Journal of Computation and Mathematics, 17(1):206-208, 2014. 4, 9
[Hsu96] Tim Hsu. Identifying congruence subgroups of the modular group. Proceedings of the American Mathematical Society, 124(5), April 1996. 4, 19
[Sch04] Gabriela Schmithuesen. An algorithm for finding the Veech group of an origami. Experimental Mathematics, 13(4):459-472, 2004. 14, 24
[Woh64] Klaus Wohlfahrt. An extension of F. Klein's level concept. Illinois J. Math., 8(3):529-535, 09 1964. 8, 18
[WS15] Gabriela Weitze-Schmithuesen. The deficiency of being a congruence group for Veech groups of origamis. International Mathematics Research Notices, 2015(6):1613-1637, 2015. 11, 22

## Index

AssociatedCharacterTable
AssociatedCharacterTablePSL2Z, 23
AssociatedCharacterTableSL2Z, 13
Conjugate
ConjugatePSL2Z, 23
ConjugateSL2Z, 12
CosetActionFromGenerators, 15
CosetActionOf, 7
CosetRepresentativeOfCusp
CosetRepresentativeOfCuspPSL2Z, 21
CosetRepresentativeOfCuspSL2Z, 10
Cusps
CuspsPSL2Z, 19
CuspsSL2Z, 9
CuspsEquivalent
CuspsEquivalentPSL2Z, 20
CuspsEquivalentSL2Z, 10
CuspWidth
CuspWidthPSL2Z, 20
CuspWidthSL2Z, 10
Deficiency
DeficiencyPSL2Z, 22
DeficiencyPSL2ZAttr, 22
DeficiencySL2Z, 11
DeficiencySL2ZAttr, 11
DefinesCosetActionRT, 14
DefinesCosetActionSJ, 15
DefinesCosetActionST, 14
GeneralizedLevel
GeneralizedLevelPSL2Z, 18
GeneralizedLevelSL2Z, 8
GeneratorsOfGroup
GeneratorsOfGroupPSL2Z, 19
GeneratorsOfGroupSL2Z, 8
Genus
GenusPSL2Z, 24
GenusSL2Z, 14

Index
IndexPSL2Z, 18
IndexSL2Z, 7
IndexModN
IndexModNPSL2Z, 22
IndexModNSL2Z, 11
IsCongruence
IsCongruencePSL2Z, 19
IsCongruenceSL2Z, 9
IsElementOf
IsElementOfPSL2Z, 24
IsElementOfSL2Z, 13
JAction, 7
LiftToSL2ZEven, 21
LiftToSL2ZOdd, 21
MatrixGeneratorsOfGroup, 9
ModularSubgroup, 5
ModularSubgroupGens, 7
ModularSubgroupRT, 6
ModularSubgroupST, 6
ModularSubgrouSJ, 6
NormalCore
NormalCorePSL2Z, 23
NormalCoreSL2Z, 12
Projection, 12
ProjectiveModularSubgroup, 17
QuotientByNormalCore
QuotientByNormalCorePSL2Z, 23
QuotientByNormalCoreSL2Z, 13
RAction, 7
RightCosetRepresentatives
RightCosetRepresentativesPSL2Z, 19
RightCosetRepresentativesSL2Z, 8
RTDecomposition, 16

SAction
SActionPSL2Z, 18
SActionSL2Z, 7
SJDecomposition, 16
STDecomposition, 15
STDecompositionAsList, 16
TAction
TActionPSL2Z, 18
TActionSL2Z, 7


[^0]:    Example

