[DJKV18] Dooms, A., Jespers, E., Konovalov, A. and Verrill, H.,
Congruence, Congruence subgroups of SL(2, Z),
Version 1.2.2
(2018)
(GAP package),
\href{https://gap-packages.github.io/congruence/}
{\texttt{https://gap-packages.github.io/}\discretionary
{}{}{}\texttt{Congruence}}.
[HL14] Hamilton, T. and Loeffler, D., Congruence testing for odd subgroups of the modular group, LMS Journal of Computation and Mathematics, London Mathematical Society, 17 (1) (2014), 206-208.
[Hsu96] Hsu, T., Identifying congruence subgroups of the modular group, Proceedings of the American Mathematical Society, 124 (5) (1996), .
[Sch04] Schmithuesen, G., An algorithm for finding the Veech group of an origami, Experimental Mathematics, Taylor & Francis, 13 (4) (2004), 459-472.
[Woh64] Wohlfahrt, K., An extension of F. Klein's level concept, Illinois J. Math., University of Illinois at Urbana-Champaign, Department of Mathematics, 8 (3) (1964), 529--535.
[WS15] Weitze-Schmithuesen, G., The deficiency of being a congruence group for Veech groups of origamis, International Mathematics Research Notices, 2015 (6) (2015), 1613-1637.
generated by GAPDoc2HTML