Goto Chapter: Top 1 2 3 4 5 6 7 Bib Ind
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 

7 More special Origamis
 7.1 Functions for constructing special origamis

7 More special Origamis

This section lists functions for the construction of some special families of origamis.

7.1 Functions for constructing special origamis

7.1-1 RandomOrigami
‣ RandomOrigami( d )( function )

Returns: An Origami

This function returns a random origami of degree \(d\). It is usually used for testing. As it is randomised over its permutations, the probability distribution is not guaranteed to be uniform on the orbits.

7.1-2 XOrigami
‣ XOrigami( n )( function )

Returns: A special origami

This function returns special origamis, so called Xorigamis. Xorigamis have degree \(2n\). The horizontal permutation is the \(2n\)-cycle \((1,\ldots, 2n)\) and the vertical permutation is of the form:

\[(1,2)(3,4)..(2n-1,2n)\]

gap> XOrigami(2);
Origami((1,2,3,4), (1,2)(3,4), 4)

7.1-3 ElevatorOrigami
‣ ElevatorOrigami( a, b, d )( function )

Returns: A special origami

The elevator origami consists of \(d\) steps of height \(b\) and length \(a\). The last step is connected to the first step.

gap>  Elevator(2,0,3);
Origami((1,2)(3,5)(4,6), (1,3)(2,4)(5,6), 6)

7.1-4 StaircaseOrigami
‣ StaircaseOrigami( a, b, d )( function )

Returns: A special origami

The staircase origami consists of \(d\) steps of height \(b\) and length \(a\).

gap> Staircase(2,0,3);
Origami((1,2)(3,4)(5,6), (2,3)(4,5), 6)
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 
Goto Chapter: Top 1 2 3 4 5 6 7 Bib Ind

generated by GAPDoc2HTML