Goto Chapter: Top 1 2 3 4 5 6 7 Bib Ind
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 

References

[BKK+22] Bonnafoux, E., Kany, M., Kattler, P., Matheus, C., Ni{\~{n}}o, R., Sedano-Mendoza, M., Valdez, F. and Weitze-Schmith{\"u}sen, G., Arithmeticity of the Kontsevich--Zorich monodromies of certain families of square-tiled surfaces, arXiv (arXiv:2206.06595 [math.DS], 2022).

[HL06] Hubert, P. and Leli\`evre, S., Prime arithmetic Teichm\"uller discs in \(\mathcal H(2)\), Israel J. Math. (2006).

[HS07] Herrlich, F. and Schmith\"{u}sen, G., A comb of origami curves in the moduli space \(M_3\) with three dimensional closure, Geom. Dedicata, 124 (2007), 69--94.

[Ran17] Randecker, A., Skript zur Vortragsreihe Unendliche Translationsfl\"achen (2017).

[Rog21] Rogovskyy, A., Origamis, die zyklisch \"uber dem NxN-Torus faktorisieren, Bachelor's Thesis, Universit\"{a}t des Saarlandes (2021).

[Sch04] Schmith\"{u}sen, G., An algorithm for finding the Veech group of an origami, Experiment. Math. (2004).

[Sch05] Schmith\"{u}sen, G., Veech Groups of Origamis, Ph.D. thesis, University of Karlsruhe (2005).

[VDCF] Vincent Delecroix Charles Fougeron, S. L., surface\_dynamics SageMath package version 0.4.0, \url{https://pypi.org/project/surface_dynamics/}.

[Zmi11] Zmiaikou, D., Origamis and permutation groups, Ph.D. thesis, University Paris-Sud (2011).

[Zor06] Zorich, A., Flat surfaces, in Frontiers in number theory, physics, and geometry. I, Springer, Berlin (2006).

 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 
Goto Chapter: Top 1 2 3 4 5 6 7 Bib Ind

generated by GAPDoc2HTML